A recursive kinematic random forest and alpha beta filter classifier for 2D radar tracks
نویسندگان
چکیده
In this work, we show that by using a recursive random forest together with an alpha beta filter classifier, it is possible to classify radar tracks from the tracks’ kinematic data. The kinematic data is from a 2D scanning radar without Doppler or height information. We use random forest as this classifier implicitly handles the uncertainty in the position measurements. As stationary targets can have an apparently high speed because of the measurement uncertainty, we use an alpha beta filter classifier to classify stationary targets from moving targets. We show an overall classification rate from simulated data at 82.6% and from real-world data at 79.7%. Additional to the confusion matrix, we also show recordings of real-world data.
منابع مشابه
Practical Evaluation of EKF1 and UKF2 Filters for Terrain Aided Navigation
This article would study batch and recursive methods that used in terrain navigation systems. Terrain navigation has a lot ofdisadvantages and so researchers have been studied on different method of aided navigation for many years. Therefore, more types of aided navigation systems were introduced with advantages and disadvantages in terms of practical and theoretical. One of the main ideas for ...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملDRFE: Dynamic Recursive Feature Elimination for Gene Identification Based on Random Forest
Determining the relevant features is a combinatorial task in various fields of machine learning such as text mining, bioinformatics, pattern recognition, etc. Several scholars have developed various methods to extract the relevant features but no method is really superior. Breiman proposed Random Forest to classify a pattern based on CART tree algorithm and his method turns out good results com...
متن کاملPredicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques
Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016